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Abstract 
 Many systems such as protein-virus systems can be modeled simply as a mixture 
of hard spheres in a hard rod solution.  There is an effective two-body attractive force 
between spheres due to the overlap of exclusion volumes from a rod by two spheres close 
to each other.  We calculate the overlap volume of these exclusion volumes, two parallel 
spherocylinders, in a one-dimensional integral representation, where the integration is 
over the direction of the axes of the spherocylinders.  The effective attractive potential is 
then calculated from an angular average of these overlap volumes.  The calculation can be 
performed both for infinitely thin rods and for rods of finite thickness when those rods are 
modeled as spherocylinders.  From a third integration over distance, we calculate the 
second virial coefficient of this system for a variety of length-to-radius ratios, rod-to-
sphere radius ratios, and rod densities.  Some observations are presented also on three-
body effects and the presence of a repulsive, non-additive three-body potential.  
 
 
1.  Introduction 
 
 The system of hard spheres of radius R immersed in a solution of hard rods of 
length L has been of interest as a model of protein-virus and other systems [1].  There is 
an effective attractive potential energy between two hard spheres from the depletion 
volume due to the rods.  The volume excluded to the center of mass of a rod by a sphere is 
a spherocylinder, composed by a cylinder of length L and radius R with hemispherical 
caps of radius R at each end.  In a sufficiently dilute system, these spherocylindrical 
exclusion volumes are nonoverlapping and independent.  However, for two hard spheres 
sufficiently close to each other (the distance between their centers must be greater than 
2R), the exclusion volumes for a rod of a given orientation can overlap each other.  The 
net volume excluded from the rod by the two spheres is less than twice the individual 
exclusion volume for a dilute system, and this results in an effective attractive interaction. 
The interaction has been calculated in the limits L/R >>1 [2] and L/R<<1 [3]. 
 
 To our knowledge, there is no known analytic expression for the overlap volume 
of two parallel spherocylinders.  In this paper, we derive a one-dimensional integral 
representation of this overlap volume for a given geometry.  In coordinates where z is 
parallel to the spherocylinder axes, slices of the overlap volume in planes of constant z are 
various cases of circle-circle overlap.  The areas of these are calculable analytically, and in 
general only numerical integration over z is needed to find the volume of overlap for a 
fixed orientation of the rod. 
 
 It is assumed that the orientation distribution of the rods is isotropic, though other 
distributions could be considered.  Calculation of the effective potential between two 
spheres then requires a second numerical integration over angle.  We proceed to calculate 
the second virial coefficient of a moderately dense system of spheres in a solution of rods, 
which requires a third numerical integration over angle.  Yaman et al. [1] derived by a 
different method a two-dimensional representation of the two-body potential, but their 
method is not applicable to rods of finite thickness. 
 



 We are also interested in the third virial coefficient, the calculation of which 
involves considering the overlap volume of three spherocylinders.  This leads to a net 
repulsive potential, and results will be presented elsewhere.  In this paper we only 
consider two-body interactions and the second virial coefficient. 
 
 
2. Interaction Potential 
 

The free energy F of a system of hard spheres immersed in a fluid of rods is 
TlnkF B−=  (1) 

where kB is Boltzmann’s constant, T is absolute temperature, and Ω is the number of 
configurations available to the rods in the system.  If we make the approximation that the 
rods only interact with the spheres and not with each other, then the number of 
configurations is given by 
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where V is the total volume of the system, Vex is the average volume excluded from the 
rods by the spheres, NB is the total number of rods in the system, and cB = NB/V is the 
concentration of rods.  In the thermodynamic limit (i.e., NB and V → ∞ while cB is 
constant) 
    )Vcexp(V exB

NB −=      (3) 

In the case of two spheres, an effective interaction arises between the spheres, 
because the volume excluded from the rods by the spheres is greater when the spheres are 
infinitely separated than when they are close to each other (i.e., 2Vex

(1) ≥ Vex(r), where 
Vex

(1) is the volume excluded by the rod by a single, isolated sphere, and Vex(r) is the 
volume excluded by two spheres separated by a distance r), due to the overlap of the 
excluded volumes when the spheres are close.  As a result, when the spheres are close to 
each other the free energy of the system is lower.  The effective interaction u(2)(r) of two 
spheres separated by a distance r is given by 
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where <Vol (r)> is the average volume of overlap between the volumes excluded by two 
spheres.  Because Vex (∞ ) > Vex (r), it follows that <Vol (r)> ≥ 0, and the interaction is 
attractive. 
 In the following section we explain how, for a given rod orientation, Vol can be 
expressed in a one-dimension numerical integral representation. 
 
 
3.  Geometry of Spherocylinder Overlap 
 
 The overlap volume Vol excluded from a particular rod in Eq. (4) is the overlap 
volume of two parallel spherocylinders oriented in the direction of the rod, each of length 
L and radius R.  Each spherocylinder is a cylinder with hemispherical caps of radius R at 



each end.  Our coordinate system is Cartesian with z along the cylinder axes and x=0 in 
the plane of the two axes. 
 
 A slice of the overlap volume in a plane of constant z is the area of circle-circle 
overlap.  This overlap can be calculated analytically in all cases.  Finding the overlap 
volume requires an integral over z, which can in some cases be calculated analytically but 
in general must be calculated numerically. 
 
 

 
 
Figure 1.  Segment-segment overlap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 2.  Segment – majority small circle overlap. 
 
 

 
 
Figure 3.  Full small circle overlap. 



 
 Figures 1-3 show the three possible cases of circle-circle overlap:  segment-
segment, segment-majority small circle, and full small circle.  A segment is the region  
between a chord and an arc (less than π radians).  If the radius of the arc is R and half of 
the chord length is h, the area of the segment is: 
 
    2/12212 )()/(cos hRhRhRA −−= −    (5) 
 Segment-majority small circle overlap is shown in Fig. 2, where the arc length of 
the circle of smaller radius in the overlap region is greater than π.  In this case, the area 
contributed by the smaller circle is that of the full circle minus a segment.  Finally, the 
large circle can completely enclose the small circle as in Fig. 3. 
 
 
 

 
 
Figure 4.  Spherocylinder-spherocylinder overlap.  The overlap region is outlined in bold. 
 
 
Our geometry is shown in Fig. 4.  We place the center of spherocylinder 1 at (-t,0,-q) and 
the center of spherocylinder 2 at (t,0,q), where overlap occurs only if 0 < t < R.  The 
centers of the circles joining the cylinders and caps are at (-t,0,-s) and (t,0,s), where   



     Lqs −= 22      (6) 
 
 If s is negative we have cylinder-cylinder and cylinder-cap overlap, while if s is 
positive and  s2 + t2 < R2 we have cylinder-cap and cap-cap overlap, or just cap-cap 
overlap. 
 
 The overlap volume is symmetric about the origin, so we need only consider the 
half in the region z>0.  In a plane of constant z, we have overlap of circles from the two 
spherocylinders of radii r1  and r2 respectively, where for z > 0, r1 < r2. 

 
 In the case s < 0, if z < |s|, then r1 (z) = r2 (z) = R.  The cylinder-cylinder overlap 
volume is simply 4A|s|, where A is the segment area given by Eq. (A1) with h = (R2 – 
t2)1/2.   
 For z > |s|, 
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and 
      .R)z(r2 =     (8) 
 If t < R/2, in an x-y plane of constant z, the overlap volume consists of two 
segments of unequal radii but with the same chord length 2h.  In this plane, r1, r2, and 2t = 
T form a triangle, and h is the altitude of this triangle perpendicular to the side of length t.  
We calculate this altitude from the formula for the area of a triangle in terms of its sides, 
where S = r1 + r2 + T. 
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 In this case, 
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 For s<0, the cylinder-cylinder overlap volume is found analytically as 
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 The cylinder-cap part of the overlap must be found by numerical integration over z 
of the cross-sectional area, from a lower limit of z = s.  For R/2 < t < R, this integral is 
broken into two parts, the part of segment-segment overlap and that of segment-majority 
small circle overlap.  The transition occurs where r1, r2 and T form a right triangle, which 
occurs at z = 2s.  The maximum z is zmax  = s + 2 (tR – t2)1/2. 
 
 For the case t < R/2, as z increases from 0 the cross-sections are successively 
segment-segment, segment – majority small circle, and full small circle, which occurs 
from z = zmax  to z = R + s.  This last volume may be expressed analytically.  A spherical 
cap from z = z0 to z = R of a sphere of radius R centered at the origin has a volume 
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 For positive s, there is either cap-cylinder and cap-cap overlap, or pure cap-cap 
overlap, in which case the overlap volume in analytically calculable from Eq. (12).  For 
cross-sections of circle-circle overlap with cap-cap overlap, Eq. (7) still applies for r1, but 
in this case, instead of Eq. (8), we have 
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and Eq. (9), but not Eq. (10), applies for the geometry of overlap. 
 
 In all cases, r1 = r2 at z = 0, so as z increases the circle-circle overlap evolves from 
segment-segment, to segment-majority small circle, to (if t > R/2) full small circle.  There 
are several different cases, depending on where the two transition values of z are located 
relative to the cap-cylinder plane, but all involve one-dimensional integrals over z.  Even 
when there is cap-cylinder overlap, in some cases the overlap is only between the 
spherical extensions of the hemispherical caps, so Eq. (12) is applicable. 
 
 
4. Angle and interparticle distance integrations 
 
We consider the effective depletion force between two hard spheres of radius R and a 
polar coordinate system where the z axis is aligned along the vector r between their 
centers.  The overlap volume depends on r (magnitude) and θ but is independent of ϕ, the 
azimuthal angle.  The transformation to t and q is 
     2/)sinr(t θ=      (14) 
     2/)cosr(q θ=     (15) 
with s given by Eq. (6).  For a given r and θ, V can be calculated by numerical integration 
over z as described above.  The angle-averaged overlap volume is 
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 Since the spheres are hard, no overlap is possible for r < 2R, and no overlap of the 
spherocylinders is possible for r > L + 2R. 
 In general, for multidimensional integration it is more efficient to use Monte Carlo 
integration in more than 4 dimensions, but to use numerical quadrature in fewer than 4 
dimensions if the integration limits are known and the integrands are reasonably smooth.  
As described above, in the z-integration to calculate Vol, we split the integration region 
into intervals so that the integrands are analytic within each interval. 
 
 We use Clenshaw-Curtis quadrature [7], which has been used extensively in 
calculation of collision integrals within the kinetic theory of gases [8,9], and which has the 
advantage that a reliable error estimate is calculated along with the integral value.  For z-
integration, we set the error estimate as a part in 104, which typically requires a quadrature 
of 8, 16, or 32 intervals.  As a check, we have independently calculated overlap volumes 
for selected specific cases by Monte Carlo integration for which the code is considerably 
simplified, with agreement consistent with Monte Carlo error estimates.  For integration 
over θ and subsequent integration over r, since the integrands are not strictly multiply 
differentiable, we use 64-point quadrature.  From our experience, integration error should 
be within a factor of 3 of the Clenshaw-Curtis error prediction. 
 



 When 2R < r < 2R + L, the effective attractive potential between spheres is 
proportional to the angular average of the overlap volume.  The second virial coefficient 
of such a system with cB rods per unit volume is given by 
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 Although the thermophysical properties of a particular hard-body system are 
independent of temperature, here cB plays a role similar to the usual role of β = 1/kBT in 
thermodynamics. 
 
 This integral can be evaluated rapidly by multiple Clenshaw-Curtis quadrature.  
Results for a variety of L and cB for D = 0 are given in Table 1.  From the Clenshaw-
Curtis error estimate, with allowances made for higher derivative discontinuities in the 
integrand, our results are estimated to be accurate to at least within a part in 105. 
 
 
5. Calculation for Thick Rods 
 
 The discussion to this point has been for infinitely thin rods.  We now consider 
rods of some small radius D, where D << R.  We choose to model these rods as 
spherocylinders of length L, so the volume excluded to a rod by a sphere is again a 
spherocylinder, of length L and radius R + D.  We retain the approximation that rod-rod 
interactions may be neglected. 
 
 We assume both the spheres and the rods are dilute, and therefore the volume 
fraction of each is much less than one.  This implies that 
     1LDc 2

B <<π      (19) 
 We will impose the restriction that the rod volume fraction is less than 0.2, and 
also that D/R < 0.2. 

 The calculation is basically the same as before, except that while the exclusion 
volumes can overlap if r > 2R, those spherocylinders have radius R + D,  and the upper 
limit of integration of Eq. 16 is now 2R + 2D + L, and Eq. 15 becomes 
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 Table 1 also lists calculated values of the second virial coefficient for finite D. 
 
 
6. Conclusions 
 
 We have derived a two-dimensional integral representation of the depletion force 
in a system of hard spheres and hard rods, both infinitely thin and of finite thickness.  
From this, we have calculated by numerical quadrature the second virial coefficient of that 
system for a variety of  parameter values.  In future work, we  will present a similar 



calculation of the third virial coefficient, including a nonadditive, repulsive contribution.  
While theoretical results have suggested the occurrence of flocculation in this system, 
experimental results have not shown flocculation [10,11].  We are in agreement with 
Yaman et al. [1]that direct calculations of the potential for all L/R can lead to different 
conclusions than approximations to the potential.  Furthermore, the nonadditive, repulsive 
three-body term in the potential should also serve to inhibit flocculation. 
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Table 1:  Second Virial Coefficient 
 

L/R cB B/R3 
  D = 0.00 D = 0.05 D = 0.10 D = 0.15 
1.0 0.10 16.519 16.469 16.414 16.353 
1.0 0.20 16.279 16.176 16.062 15.938 
1.0 0.50 15.533 15.261 14.951 14.609 
1.0 1.00 14.206 13.603 12.892 12.080 
2.0 0.10 15.389 15.345 15.294 15.238 
2.0 0.20 13.973 13.876 13.762 13.636 
2.0 0.50 9.394 9.074 8.686 8.246 
2.0 1.00 0.491 -0.493 -1.733 -3.203 
5.0 0.10 5.790 6.313 6.747 7.112 
5.0 0.20 -6.005 -5.002 -4.190 -3.526 
5.0 0.50 -47.559 -45.595 -44.299 -43.534 
5.0 1.00 -148.059 -148.917 -153.167 -160.665 

10.0 0.10 -31.331 -28.016 -25.181 -22.732 
10.0 0.20 -84.963 -78.475 -73.028 -68.413 
10.0 0.50 -297.444 -285.683 -278.515 -275.261 
10.0 1.00 -1106.890 -1199.623 -1374.450 -1650.265 

 


